Skip to content
Large-Scale Data Engineering in Cloud

Performance Tuning, Cost Optimization / Internals, Research by Dmitry Tolpeko

  • About
  • About
  • Hadoop,  YARN

    Hadoop YARN – Monitoring Resource Consumption by Running Applications in Multi-Cluster Environments

    June 25, 2020

    In cloud it is typical to run multiple compute clusters, so browsing the Web UI for every cluster to check the current resource consumption by applications is not always easy and convenient especially if YARN clusters are managed by different Hadoop distributions (Amazon EMR, Cloudera, Qubole etc.).

    Let’s see how you can automate this process and find out how many applications are running and which resources they are consuming (containers, memory and CPU).

    Read More
    dmtolpeko
  • I/O,  Parquet,  Storage

    How Map Column is Written to Parquet – Converting JSON to Map to Increase Read Performance

    June 18, 2020

    It is quite common today to convert incoming JSON data into Parquet format to improve the performance of analytical queries.

    When JSON data has an arbitrary schema i.e. different records can contain different key-value pairs, it is common to parse such JSON payloads into a map column in Parquet.

    How is it stored? What read performance can you expect? Will json_map["key"] read only data for key or the entire JSON?

    Read More
    dmtolpeko
  • Flink,  I/O,  Parquet,  S3

    Flink Streaming to Parquet Files in S3 – Massive Write IOPS on Checkpoint

    June 9, 2020

    It is quite common to have a streaming Flink application that reads incoming data and puts them into Parquet files with low latency (a couple of minutes) for analysts to be able to run both near-realtime and historical ad-hoc analysis mostly using SQL queries.

    But let’s review write patterns and problems that can appear for such applications at scale.

    Read More
    dmtolpeko
  • AWS,  I/O,  S3,  Storage

    S3 Low Latency Writes – Using Aggressive Retries to Get Consistent Latency – Request Timeouts

    June 4, 2020

    Amazon S3 is highly scalable distributed system that can handle extremely large volumes of data, can adapt to an increasing workload and provide quite good performance as a file storage.

    But sometimes you have to tweak it to run faster that can be especially important for latency-sensitive applications.

    Read More
    dmtolpeko

Recent Posts

  • Nov 26, 2023 ORDER BY in Spark – How Global Sort Is Implemented, Sampling, Range Rartitioning and Skew
  • Oct 25, 2023 Reading JSON in Spark – Full Read for Inferring Schema and Sampling, SamplingRatio Option Implementation and Issues
  • Oct 15, 2023 Distributed COUNT DISTINCT – How it Works in Spark, Multiple COUNT DISTINCT, Transform to COUNT with Expand, Exploded Shuffle, Partial Aggregations
  • Oct 10, 2023 Spark – Reading Parquet – Pushed Filters, SUBSTR(timestamp, 1, 10), LIKE and StringStartsWith
  • Oct 06, 2023 Spark Stage Restarts – Partial Restarts, Multiple Retry Attempts with Different Task Sets, Accepted Late Results from Failed Stages, Cost of Restarts

Archives

  • November 2023 (1)
  • October 2023 (5)
  • September 2023 (1)
  • July 2023 (1)
  • August 2022 (4)
  • April 2022 (1)
  • March 2021 (2)
  • January 2021 (2)
  • June 2020 (4)
  • May 2020 (8)
  • April 2020 (3)
  • February 2020 (3)
  • December 2019 (5)
  • November 2019 (4)
  • October 2019 (1)
  • September 2019 (2)
  • August 2019 (1)
  • May 2019 (9)
  • April 2019 (2)
  • January 2019 (3)
  • December 2018 (4)
  • November 2018 (1)
  • October 2018 (6)
  • September 2018 (2)

Categories

  • Amazon (14)
  • Auto Scaling (1)
  • AWS (28)
  • Cost Optimization (1)
  • CPU (2)
  • Data Skew (2)
  • Distributed (1)
  • EC2 (1)
  • EMR (13)
  • ETL (2)
  • Flink (5)
  • Hadoop (14)
  • Hive (17)
  • Hue (1)
  • I/O (25)
  • JSON (1)
  • JVM (3)
  • Kinesis (1)
  • Logs (1)
  • Memory (7)
  • Monitoring (4)
  • Optimizer (2)
  • ORC (5)
  • Parquet (8)
  • Pig (2)
  • Presto (3)
  • Qubole (2)
  • RDS (1)
  • S3 (18)
  • Snowflake (6)
  • Spark (17)
  • Storage (14)
  • Tez (10)
  • YARN (18)

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
Savona Theme by Optima Themes