Skip to content
Large-Scale Data Engineering in Cloud

Performance Tuning, Cost Optimization / Internals, Research by Dmitry Tolpeko

  • About
  • About
  • Hadoop,  YARN

    Hadoop YARN – Calculating Per Second Utilization of Cluster using Resource Manager Logs

    September 11, 2019

    You can use YARN REST API to collect various Hadoop cluster metrics such as available and allocated memory, CPU, containers and so on.

    If you set up a process to extract data from this API once per minute e.g. you can very easily collect and analyze historical and current cluster utilization quite accurately. For more details, see Collecting Utilization Metrics from Multiple Clusters article.

    But even if you query YARN REST API every second it still can only provide a snapshot of the used YARN resources. It does not show which application allocates or releases containers, their memory and CPU capacity, in which order these events occur, what is their exact timestamp and so on.

    For this reason I prefer a different approach that is based on using the YARN Resource Manager logs to calculate the exact per second utilization metrics of a Hadoop cluster.

    Read More
    dmtolpeko
  • Hadoop,  Hive,  Memory,  YARN

    Tuning Hadoop YARN – Boosting Memory Settings Beyond the Limits to Increase Cluster Capacity and Utilization

    September 4, 2019

    Memory allocation in Hadoop YARN clusters has some drawbacks that may lead to significant cluster under-utilization and at the same time (!) to large queues of pending applications.

    So you have to pay for extra compute resources that you do not use and still have unsatisfied users. Let’s see how this can happen and how you can mitigate this.

    Read More
    dmtolpeko

Recent Posts

  • Nov 26, 2023 ORDER BY in Spark – How Global Sort Is Implemented, Sampling, Range Rartitioning and Skew
  • Oct 25, 2023 Reading JSON in Spark – Full Read for Inferring Schema and Sampling, SamplingRatio Option Implementation and Issues
  • Oct 15, 2023 Distributed COUNT DISTINCT – How it Works in Spark, Multiple COUNT DISTINCT, Transform to COUNT with Expand, Exploded Shuffle, Partial Aggregations
  • Oct 10, 2023 Spark – Reading Parquet – Pushed Filters, SUBSTR(timestamp, 1, 10), LIKE and StringStartsWith
  • Oct 06, 2023 Spark Stage Restarts – Partial Restarts, Multiple Retry Attempts with Different Task Sets, Accepted Late Results from Failed Stages, Cost of Restarts

Archives

  • November 2023 (1)
  • October 2023 (5)
  • September 2023 (1)
  • July 2023 (1)
  • August 2022 (4)
  • April 2022 (1)
  • March 2021 (2)
  • January 2021 (2)
  • June 2020 (4)
  • May 2020 (8)
  • April 2020 (3)
  • February 2020 (3)
  • December 2019 (5)
  • November 2019 (4)
  • October 2019 (1)
  • September 2019 (2)
  • August 2019 (1)
  • May 2019 (9)
  • April 2019 (2)
  • January 2019 (3)
  • December 2018 (4)
  • November 2018 (1)
  • October 2018 (6)
  • September 2018 (2)

Categories

  • Amazon (14)
  • Auto Scaling (1)
  • AWS (28)
  • Cost Optimization (1)
  • CPU (2)
  • Data Skew (2)
  • Distributed (1)
  • EC2 (1)
  • EMR (13)
  • ETL (2)
  • Flink (5)
  • Hadoop (14)
  • Hive (17)
  • Hue (1)
  • I/O (25)
  • JSON (1)
  • JVM (3)
  • Kinesis (1)
  • Logs (1)
  • Memory (7)
  • Monitoring (4)
  • Optimizer (2)
  • ORC (5)
  • Parquet (8)
  • Pig (2)
  • Presto (3)
  • Qubole (2)
  • RDS (1)
  • S3 (18)
  • Snowflake (6)
  • Spark (17)
  • Storage (14)
  • Tez (10)
  • YARN (18)

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
Savona Theme by Optima Themes